Experiments
Experiment
dataclass
An experiment that consists in running an oracular program on a set of different hyperparameter combinations.
This class allows defining and running experiments. It supports the use of multiple workers, and allows interrupting and resuming experiments (the persistent experiment state is stored in a file on disk). Failed configurations can be selectively retried. By activating caching, a successful experiment can be replicated (or some of its configurations replayed with a debugger) without issuing calls to LLMs or to tools with non-replicable outputs.
Class Type Parameters:
| Name | Bound or Constraints | Description | Default |
|---|---|---|---|
C
|
ExperimentConfig
|
Type parameter for the configuration type, which is a dataclass that holds all experiment hyperparameters. |
required |
Attributes:
| Name | Type | Description |
|---|---|---|
config_class |
type[C]
|
The associated configuration class, which defines
the hyperparameters of the experiment and how to map them to
arguments of the |
context |
ExecutionContext
|
Command execution context, which contains the kind of
information usually provided in the |
output_dir |
Path | str
|
The directory where all experiment data is stored
(persistent state, results, logs, caches...), either as an
absolute path or relative to the workspace root specified in
|
configs |
Sequence[C] | None
|
A sequence of configurations to run. If |
configs_context |
object | None
|
A global context parameter to be passed to all configurations' instantiation method. This value must be picklable since it is sent to remote worker processes. |
name |
str | None
|
Experiment name, which is stored in the persistent state file when provided and is otherwise not used. |
description |
str | None
|
Experiment description, which is stored in the persistent state file when provided and is otherwise not used. |
config_naming |
Callable[[C, UUID], str] | None
|
A function for attributing string identifiers to configurations, which maps a configuration along with a fresh UUID to a name. By default, the UUID alone is used. |
cache_requests |
bool
|
Whether or not to enable caching of LLM requests
and expensive computations (see |
workers_setup |
WorkersSetup[Any] | None
|
If provided, specifies the setup work to be
performed on all processes (see |
log_level |
LogLevel | None
|
Minimum log level to record. Messages with a lower
level will be ignored. (Override the corresponding
|
export_raw_trace |
bool | None
|
Whether to export the raw trace for all
configuration runs. (Override the corresponding
|
export_log |
bool | None
|
Whether to export the log messages for all
configuration runs. (Override the corresponding
|
export_browsable_trace |
bool | None
|
Whether to export a browsable trace for
all configuration runs, which can be visualized in the VSCode
extension (see |
verbose_snapshots |
bool | None
|
If |
Tips
- New hyperparameters can be added to the
Ctype without invalidating an existing experiment's persistent state, by providing default values for them.
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 | |
absolute_output_dir
property
absolute_output_dir: Path
Get the absolute output directory, by combining the
context.root and output_dir paths.
load
load() -> Self
Load the experiment.
If no persistent state exists on disk, it is created (with all
configurations marked with "todo" status). If some experiment
state exists on disk, it is loaded. If more configurations are
specified in self.configs than are specified on disk, the
missing configurations are added to the persistent state and
marked with "todo". If the persistent state contains
configurations that are not specified in self.configs, a
warning is shown. Use the clean_index method to remove these
configurations from the persistent state.
Return self, so as to allow chaining.
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 | |
is_done
is_done() -> bool
Check if the experiment is done, i.e., all configurations are marked as "done".
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
329 330 331 332 333 334 335 336 | |
clean_index
clean_index() -> None
Remove from the persistent state file all configurations that
are not mentioned in self.configs.
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 | |
mark_errors_as_todos
mark_errors_as_todos()
Update the persistent state to mark all configurations with
status "failed" as "todo". They will be retried when the
resume method is called.
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
357 358 359 360 361 362 363 364 365 366 367 368 | |
resume
resume(max_workers: int = 1, log_progress: bool = True, interactive: bool = False)
Resume the experiment, running all configurations with state "todo". Every configuration run results in marking the configuration's state with either "failed" (in case an uncaught exception was raised) or "done".
The whole process can be interrupted using Ctrl-C, in which case the persistent experiment state is stored on disk, a message is printed saying so, and Ctrl-C can be hit again until all workers are successfully terminated.
A summary file is produced at the end of the experiment using
the summary_file method if all configurations were run
successfully.
Attributes:
| Name | Type | Description |
|---|---|---|
max_workers |
Number of parallel process workers to use. |
|
log_progress |
Whether to show a progress bar in the console. |
|
interactive |
If |
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 | |
replay_config_by_name
replay_config_by_name(config_name: str) -> None
Replay a configuration with a given name, reusing the cache if it exists.
This way, one can debug the execution of an experiment after the fact, without any LLMs being called. Note that one can also replay a configuration that failed with an exception within a debugger to investigate it.
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 | |
replay_config
replay_config(config: C) -> None
Replay a configuration. See replay_config_by_name for details.
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
611 612 613 614 615 616 617 | |
replay_all_configs
replay_all_configs()
Replay all configurations, replicating the experiment.
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
619 620 621 622 623 624 625 626 627 | |
config_success_values_by_name
config_success_values_by_name(config_name: str, *, type: Any) -> Sequence[Any]
Load the success values associated with a given configuration, identified by name.
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
629 630 631 632 633 634 635 636 637 638 639 640 | |
config_success_values
config_success_values(config: C, *, type: Any) -> Sequence[Any]
Load the success values associated with a given configuration.
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
642 643 644 645 646 647 648 | |
save_summary
save_summary(ignore_missing: bool = False, add_timing: bool = False)
Save a summary of the results in a CSV file.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
ignore_missing
|
bool
|
If |
False
|
add_timing
|
bool
|
If |
False
|
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 | |
load_summary
load_summary()
Load the summary file into a DataFrame.
The summary file should have been created before using the
save_summary method.
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
675 676 677 678 679 680 681 682 683 684 685 686 | |
get_status
get_status() -> dict[str, int]
Get the status of the experiment configurations.
Returns:
| Type | Description |
|---|---|
dict[str, int]
|
A dictionary with keys 'todo', 'done', 'failed' and their |
dict[str, int]
|
counts (i.e., number of configurations with this status). |
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 | |
run_cli
run_cli()
Run a CLI application that allows controlling the experiment
from the shell. See ExperimentCLI for details.
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
704 705 706 707 708 709 | |
ExperimentConfig
Bases: Protocol
A configuration is a dataclass that holds a set of hyperparameters,
which induce a run_strategy call.
Note
The following arguments must not be set since they are managed
by the Experiment class. Any specified value may be discarded.
cache_fileembeddings_cache_filecache_mode
The following arguments may be set, but the Experiment class
offers options to override them.
log_levelexport_raw_traceexport_logexport_browsable_traceexport_all_on_pull
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 | |
instantiate
instantiate(context: object) -> RunStrategyArgs
Instantiate the configuration into a run_strategy command
instance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
context
|
object
|
Additional global context information that can be
optionally passed by the experiment. By default,
experiments just pass |
required |
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
97 98 99 100 101 102 103 104 105 106 107 | |
ExperimentState
dataclass
Persistent state of an experiment, stored on disk as a YAML file.
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | |
inverse_mapping
inverse_mapping() -> Callable[[C], str | None]
Compute an inverse function mapping configurations to their unique names (or None if not in the state).
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
143 144 145 146 147 148 149 150 151 152 153 154 155 | |
ConfigInfo
dataclass
Information stored in the persistent configuration state for each configuration.
Attributes:
| Name | Type | Description |
|---|---|---|
params |
C
|
The configuration. |
status |
Literal['todo', 'done', 'failed']
|
Status of the configuration. |
start_time |
datetime | None
|
Time at which the configuration execution started. |
end_time |
datetime | None
|
Time at which the configuration execution ended. |
interruption_time |
datetime | None
|
If the configuration execution was interrupted,
the time at which the interruption happened (the |
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | |
WorkersSetup
dataclass
Specification for the setup work that must be performed on all processes.
Attributes:
| Name | Type | Description |
|---|---|---|
common |
Callable[[], T]
|
A function that is called one on the main process. It must return a picklable object. |
per_worker |
Callable[[T], None]
|
A function that is called on each worker and
passed the result of |
Example
Suppose one wants to spawn a single proving server that is used
by all workers. One can setup the server in common, return
some access information (e.g. a port number), and then have
per_worker configure each worker to connect to the server.
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | |
ExperimentCLI
A CLI application for controlling an experiment from the shell.
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 | |
run
run(
*,
max_workers: int = 1,
retry_errors: bool = False,
interactive: bool = False,
log: bool | None = None,
log_level: str | None = None,
cache: bool | None = None,
raw_trace: bool | None = None,
browsable_trace: bool | None = None,
verbose_snapshots: bool | None = None,
)
Start or resume the experiment.
Attributes:
| Name | Type | Description |
|---|---|---|
max_workers |
Number of parallel process workers to use. |
|
retry_errors |
Mark failed configurations to be retried. |
|
log_level |
If provided, overrides the |
|
interactive |
If |
|
cache |
If provided, override the |
|
log |
If provided, override the |
|
log_level |
If provided, override the |
|
raw_trace |
If provided, override the |
|
browsable_trace |
If provided, override the
|
|
verbose_snapshots |
If provided, override the
|
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 | |
status
status()
Print the status of the experiment.
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 | |
replay
replay(config: str | None = None)
Replay one or all configurations.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
config
|
str | None
|
The name of the configuration to replay. If not provided, all configurations are replayed. |
None
|
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 | |
clean_index
clean_index()
Clean unregistered configurations from the persistent state file.
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
1058 1059 1060 1061 1062 1063 | |
force_summary
force_summary(add_timing: bool = False)
Force the generation of a summary file, even if not all configurations were successfully run.
Source code in src/delphyne/stdlib/experiments/experiment_launcher.py
1065 1066 1067 1068 1069 1070 1071 1072 | |