Skip to content

Queries and Prompting Policies

Queries

Query

Bases: AbstractQuery[T]

Base class for queries.

This class adds standard convenience features on top of AbstractQuery, using reflection to allow queries to be defined concisely. Here is a simple example of a query type definition:

@dataclass class MakeSum(Query[list[int]]):
    '''Given a list of allowed numbers and a target number, you
    must find a sub-list whose elements sum up to the target.
    Just answer with a list of numbers as a JSON object and
    nothing else.'''

    allowed: list[int] target: int

In general, a query type is a dataclass that inherits Query[T], where T is the query's answer type. In the example above, no parser is specified and so oracles are requested to provide structured answers as JSON objects, which are automatically parsed into the answer type (list[int]) using pydantic. Assuming that no Jinja prompt file is provided, the docstring is used as a system prompt and instance prompts are generated by simply serializing MakeSum instances into YAML.

All attributes of a query must be serializable by pydantic. They can be builtin types (int, list, dict...), custom dataclasses...

Customizing Prompts

System and instance prompts can be specified via Jinja templates. The templates manager (TemplatesManager) looks for templates named "..jinja". Templates can also be provided by defining the __system_prompt__ and/or __instance_prompt__ class attributes. If none of these are provided, the query's docstring is used as a system prompt and DEFAULT_INSTANCE_PROMPT is used as an instance prompt template. All attributes from QueryTemplateArgs are made available to templates, with possibly extra ones.

Answer Modes and Configurations

A query can define several answer modes (AnswerMode), each of which can be associated with a different parser and set of settings. By default, the only answer mode is None. More answer modes can be defined by setting class variable __modes__.

The parser_for method maps modes to parser specifications. Its default implementation first checks whether the parser method is overriden, in which case it is used. Otherwise, the __parser__ attribute is checked. If none of these conditions hold, structured is used as a default parser.

Allowing Multi-Message Exchanges and Tool Calls

A common pattern for interacting with LLMs is to have multi-message exchanges where the full conversation history is resent repeatedly. LLMs are also often allowed to request tool calls. This interaction pattern is implemented in the interact standard strategy. It is enabled by several features on the Query side.

Answer Prefixes

If a query type has a prefix attribute with type AnswerPrefix, this attribute can be used to provide a chat history, to be added to the query's prompt.

The Response Type

If the query answer type is Response, the query does not only return a parsed answer, but also the LLM raw answer (which can be appended to a chat history), and possibly a sequence of tool calls.

Source code in src/delphyne/stdlib/queries.py
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
class Query[T](dp.AbstractQuery[T]):
    """
    Base class for queries.

    This class adds standard convenience features on top of
    `AbstractQuery`, using reflection to allow queries to be defined
    concisely. Here is a simple example of a query type definition:

    ```python
    @dataclass class MakeSum(Query[list[int]]):
        '''Given a list of allowed numbers and a target number, you
        must find a sub-list whose elements sum up to the target.
        Just answer with a list of numbers as a JSON object and
        nothing else.'''

        allowed: list[int] target: int
    ```

    In general, a query type is a dataclass that inherits `Query[T]`,
    where `T` is the query's answer type. In the example above, no
    parser is specified and so oracles are requested to provide
    structured answers as JSON objects, which are automatically parsed
    into the answer type (`list[int]`) using pydantic. Assuming that no
    Jinja prompt file is provided, the docstring is used as a system
    prompt and instance prompts are generated by simply serializing
    `MakeSum` instances into YAML.

    All attributes of a query must be serializable by pydantic. They can
    be builtin types (int, list, dict...), custom dataclasses...

    ## Customizing Prompts

    System and instance prompts can be specified via Jinja templates.
    The templates manager (`TemplatesManager`) looks for templates named
    "<QueryName>.<instance|system>.jinja". Templates can also be
    provided by defining the `__system_prompt__` and/or
    `__instance_prompt__` class attributes. If none of these are
    provided, the query's docstring is used as a system prompt and
    `DEFAULT_INSTANCE_PROMPT` is used as an instance prompt template.
    All attributes from `QueryTemplateArgs` are made available to
    templates, with possibly extra ones.

    ## Answer Modes and Configurations

    A query can define several answer modes (`AnswerMode`), each of
    which can be associated with a different parser and set of settings.
    By default, the only answer mode is `None`. More answer modes can be
    defined by setting class variable `__modes__`.

    The `parser_for` method maps modes to parser specifications. Its
    default implementation first checks whether the `parser` method is
    overriden, in which case it is used. Otherwise, the `__parser__`
    attribute is checked. If none of these conditions hold, `structured`
    is used as a default parser.

    ## Allowing Multi-Message Exchanges and Tool Calls

    A common pattern for interacting with LLMs is to have multi-message
    exchanges where the full conversation history is resent repeatedly.
    LLMs are also often allowed to request tool calls. This interaction
    pattern is implemented in the `interact` standard strategy. It is
    enabled by several features on the `Query` side.

    ### Answer Prefixes

    If a query type has a prefix attribute with type `AnswerPrefix`,
    this attribute can be used to provide a chat history, to be added to
    the query's prompt.

    ### The `Response` Type

    If the query answer type is `Response`, the query does not only
    return a parsed answer, but also the LLM raw answer (which can be
    appended to a chat history), and possibly a sequence of tool calls.
    """

    __modes__: ClassVar[Sequence[dp.AnswerMode] | None] = None
    __parser__: ClassVar[Parser[Any] | GenericParser | ParserDict | None] = (
        None
    )

    ### Parsing Answers

    def parser(self) -> Parser[T] | GenericParser:
        """
        Method to override to provide a parser specification common to
        all modes. Alternatively, the `__parser__` class attribute can
        be set. The first method allows more flexibility since parser
        specifications can then depend on query attributes.
        """
        assert False, (
            "Please provide `__parser__`, `parser` or "
            + f"`parser_for` for query type {type(self)}"
        )

    def parser_for(self, mode: dp.AnswerMode) -> Parser[T] | GenericParser:
        """
        Obtain a parser speficiation for a given answer mode.

        This method can be overriden. By default, it does the following:

        1. If the `parser` method is overriden, it uses it.
        2. If `__parser__` is set as a parser, it is used.
        2. If `__parser__` is set as a dictionary, the mode is used as a
           key to obtain a parser.
        3. Otherwise, `structured` is used as a default parser.
        """
        if dpi.is_method_overridden(Query, type(self), "parser"):
            assert self.__parser__ is None, (
                f"Both `__parser__` and `parser` are provided for {type(self)}."
            )
            return self.parser()
        elif self.__parser__ is None:
            return structured  # default parser
        else:
            assert not dpi.is_method_overridden(
                Query, type(self), "parser_for"
            ), (
                "Both `__parser__` and `parser_for` are "
                + f"provided for {type(self)}."
            )
            parser_attr = self.__parser__
            if isinstance(parser_attr, dict):
                parser = parser_attr[mode]
            else:
                parser = parser_attr
            assert isinstance(parser, (Parser, GenericParser)), (
                "Expected parser type, got: " + f"{type(parser)}."
            )
            return cast(Any, parser)

    def _instantiated_parser_for(self, mode: dp.AnswerMode) -> Parser[T]:
        parser = self.parser_for(mode)
        if isinstance(parser, GenericParser):
            return parser.for_type(self._answer_type())
        else:
            return parser

    @override
    def parse_answer(self, answer: dp.Answer) -> T | dp.ParseError:
        assert answer.mode in self.query_modes(), (
            f"Unknown mode: {answer.mode}"
        )
        try:
            parser = self._instantiated_parser_for(answer.mode)
            return parser.parse(answer)
        except dp.ParseError as e:
            return e

    @override
    def query_settings(self, mode: dp.AnswerMode) -> dp.QuerySettings:
        parser = self._instantiated_parser_for(mode)
        return parser.settings

    ### Query Prefixes

    @classmethod
    def _has_special_prefix_attr(cls):
        annots = typing.get_type_hints(cls)
        return "prefix" in annots and annots["prefix"] is ct.AnswerPrefix

    @override
    def query_prefix(self) -> ct.AnswerPrefix | None:
        """
        Return the value of the `prefix` attribute if it has type
        annotation `AnswerPrefix` or return `None`.
        """
        if self._has_special_prefix_attr():
            return getattr(self, "prefix")
        return None

    ### Producing Prompts

    @override
    def generate_prompt(
        self,
        *,
        kind: Literal["system", "instance"] | str,
        mode: dp.AnswerMode,
        params: dict[str, object],
        extra_args: dict[str, object] | None = None,
        env: dp.AbstractTemplatesManager | None = None,
    ) -> str:
        assert env is not None, _no_prompt_manager_error()
        example_id = extra_args.get("example_id") if extra_args else None
        assert example_id is None or isinstance(example_id, int)
        assert not extra_args or "example" not in extra_args
        args_min: QueryTemplateArgs = {
            "query": self,
            "mode": mode,
            "available_modes": self.query_modes(),
            "params": params,
            "format": self._instantiated_parser_for(mode).formatting,
            "example_id": example_id,
            "example": example_id is not None,
        }
        args: dict[str, object] = {**args_min}
        if extra_args:
            args.update(extra_args)
        if (glob := self.globals()) is not None:
            args["globals"] = glob
        return env.prompt(
            query_name=self.query_name(),
            prompt_kind=kind,
            template_args=args,
            default_template=self._default_prompt(kind),
        )

    @classmethod
    def _default_prompt(
        cls, kind: Literal["system", "instance"] | str
    ) -> str | None:
        attr_name = f"__{kind}_prompt__"
        if hasattr(cls, attr_name):
            res = getattr(cls, attr_name)
            assert isinstance(res, str)
            return textwrap.dedent(res).strip()
        if kind == "instance":
            if cls._has_special_prefix_attr():
                return DEFAULT_INSTANCE_PROMPT_WITH_PREFIX
            else:
                return DEFAULT_INSTANCE_PROMPT
        if kind == "system" and (doc := inspect.getdoc(cls)) is not None:
            return doc
        if kind == "feedback":
            return DEFAULT_FEEDBACK_PROMPT
        return None

    def globals(self) -> dict[str, object] | None:
        """
        Return global objects accessible in prompts via the `globals`
        attribute.
        """
        return None

    ### Other Simple Overrides

    @override
    def serialize_args(self) -> dict[str, object]:
        return cast(dict[str, object], ty.pydantic_dump(type(self), self))

    @classmethod
    def _answer_type(cls) -> TypeAnnot[T]:
        return dpi.first_parameter_of_base_class(cls)

    @override
    def answer_type(self) -> TypeAnnot[T]:
        return self._answer_type()

    @override
    def finite_answer_set(self) -> Sequence[dp.Answer] | None:
        # We handle the special case where the return type is a literal
        # type that is a subtype of str.
        ans = self.answer_type()
        if (res := _match_string_literal_type(ans)) is not None:
            return [dp.Answer(None, v) for v in res]
        return None

    @override
    def query_modes(self) -> Sequence[dp.AnswerMode]:
        if self.__modes__ is not None:
            return self.__modes__
        return [None]

    ### Generating Opaque Spaces

    @overload
    def using(self, get_policy: EllipsisType, /) -> Opaque[IPDict, T]: ...

    @overload
    def using[P](
        self,
        get_policy: Callable[[P], pol.PromptingPolicy] | EllipsisType,
        /,
        inner_policy_type: type[P] | None = None,
    ) -> Opaque[P, T]: ...

    def using[P](
        self,
        get_policy: Callable[[P], pol.PromptingPolicy] | EllipsisType,
        /,
        inner_policy_type: type[P] | None = None,
    ) -> Opaque[P, T]:
        """
        Turn a query into an opaque space by providing a mapping from
        the ambient inner policy to a prompting policy.

        Attributes:
            get_policy: A function that maps the ambient inner policy to
                a prompting policy to use for answering the query.
                Alternatively, if the ellipsis value `...` is passed, the
                inner policy type is assumed to be `IPDict`, and
                prompting policies are automatically selected using tags
                (see `IPDict` documentation).
            inner_policy_type: Ambient inner policy type. This information
                is not used at runtime but it can be provided to help type
                inference when necessary.

        The optional `inner_policy_type` argument is ignored at runtime
        and can be used to help type checkers infer the type of the
        ambient inner policy.
        """
        if isinstance(get_policy, EllipsisType):
            return OpaqueSpace[P, T].from_query(
                self, cast(Any, pol.dict_subpolicy)
            )
        return OpaqueSpace[P, T].from_query(self, lambda p, _: get_policy(p))

    def run_toplevel(
        self,
        env: PolicyEnv,
        policy: pol.PromptingPolicy,
    ) -> Stream[T]:
        """
        Obtain a search stream of query answers, given a prompting
        policy.
        """
        attached = dp.spawn_standalone_query(self)
        return policy(attached, env)

parser

parser() -> Parser[T] | GenericParser

Method to override to provide a parser specification common to all modes. Alternatively, the __parser__ class attribute can be set. The first method allows more flexibility since parser specifications can then depend on query attributes.

Source code in src/delphyne/stdlib/queries.py
826
827
828
829
830
831
832
833
834
835
836
def parser(self) -> Parser[T] | GenericParser:
    """
    Method to override to provide a parser specification common to
    all modes. Alternatively, the `__parser__` class attribute can
    be set. The first method allows more flexibility since parser
    specifications can then depend on query attributes.
    """
    assert False, (
        "Please provide `__parser__`, `parser` or "
        + f"`parser_for` for query type {type(self)}"
    )

parser_for

parser_for(mode: AnswerMode) -> Parser[T] | GenericParser

Obtain a parser speficiation for a given answer mode.

This method can be overriden. By default, it does the following:

  1. If the parser method is overriden, it uses it.
  2. If __parser__ is set as a parser, it is used.
  3. If __parser__ is set as a dictionary, the mode is used as a key to obtain a parser.
  4. Otherwise, structured is used as a default parser.
Source code in src/delphyne/stdlib/queries.py
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
def parser_for(self, mode: dp.AnswerMode) -> Parser[T] | GenericParser:
    """
    Obtain a parser speficiation for a given answer mode.

    This method can be overriden. By default, it does the following:

    1. If the `parser` method is overriden, it uses it.
    2. If `__parser__` is set as a parser, it is used.
    2. If `__parser__` is set as a dictionary, the mode is used as a
       key to obtain a parser.
    3. Otherwise, `structured` is used as a default parser.
    """
    if dpi.is_method_overridden(Query, type(self), "parser"):
        assert self.__parser__ is None, (
            f"Both `__parser__` and `parser` are provided for {type(self)}."
        )
        return self.parser()
    elif self.__parser__ is None:
        return structured  # default parser
    else:
        assert not dpi.is_method_overridden(
            Query, type(self), "parser_for"
        ), (
            "Both `__parser__` and `parser_for` are "
            + f"provided for {type(self)}."
        )
        parser_attr = self.__parser__
        if isinstance(parser_attr, dict):
            parser = parser_attr[mode]
        else:
            parser = parser_attr
        assert isinstance(parser, (Parser, GenericParser)), (
            "Expected parser type, got: " + f"{type(parser)}."
        )
        return cast(Any, parser)

query_prefix

query_prefix() -> AnswerPrefix | None

Return the value of the prefix attribute if it has type annotation AnswerPrefix or return None.

Source code in src/delphyne/stdlib/queries.py
904
905
906
907
908
909
910
911
912
@override
def query_prefix(self) -> ct.AnswerPrefix | None:
    """
    Return the value of the `prefix` attribute if it has type
    annotation `AnswerPrefix` or return `None`.
    """
    if self._has_special_prefix_attr():
        return getattr(self, "prefix")
    return None

globals

globals() -> dict[str, object] | None

Return global objects accessible in prompts via the globals attribute.

Source code in src/delphyne/stdlib/queries.py
971
972
973
974
975
976
def globals(self) -> dict[str, object] | None:
    """
    Return global objects accessible in prompts via the `globals`
    attribute.
    """
    return None

using

using(get_policy: EllipsisType) -> Opaque[IPDict, T]
using(
    get_policy: Callable[[P], PromptingPolicy] | EllipsisType,
    /,
    inner_policy_type: type[P] | None = None,
) -> Opaque[P, T]
using(
    get_policy: Callable[[P], PromptingPolicy] | EllipsisType,
    /,
    inner_policy_type: type[P] | None = None,
) -> Opaque[P, T]

Turn a query into an opaque space by providing a mapping from the ambient inner policy to a prompting policy.

Attributes:

Name Type Description
get_policy

A function that maps the ambient inner policy to a prompting policy to use for answering the query. Alternatively, if the ellipsis value ... is passed, the inner policy type is assumed to be IPDict, and prompting policies are automatically selected using tags (see IPDict documentation).

inner_policy_type

Ambient inner policy type. This information is not used at runtime but it can be provided to help type inference when necessary.

The optional inner_policy_type argument is ignored at runtime and can be used to help type checkers infer the type of the ambient inner policy.

Source code in src/delphyne/stdlib/queries.py
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
def using[P](
    self,
    get_policy: Callable[[P], pol.PromptingPolicy] | EllipsisType,
    /,
    inner_policy_type: type[P] | None = None,
) -> Opaque[P, T]:
    """
    Turn a query into an opaque space by providing a mapping from
    the ambient inner policy to a prompting policy.

    Attributes:
        get_policy: A function that maps the ambient inner policy to
            a prompting policy to use for answering the query.
            Alternatively, if the ellipsis value `...` is passed, the
            inner policy type is assumed to be `IPDict`, and
            prompting policies are automatically selected using tags
            (see `IPDict` documentation).
        inner_policy_type: Ambient inner policy type. This information
            is not used at runtime but it can be provided to help type
            inference when necessary.

    The optional `inner_policy_type` argument is ignored at runtime
    and can be used to help type checkers infer the type of the
    ambient inner policy.
    """
    if isinstance(get_policy, EllipsisType):
        return OpaqueSpace[P, T].from_query(
            self, cast(Any, pol.dict_subpolicy)
        )
    return OpaqueSpace[P, T].from_query(self, lambda p, _: get_policy(p))

run_toplevel

run_toplevel(env: PolicyEnv, policy: PromptingPolicy) -> Stream[T]

Obtain a search stream of query answers, given a prompting policy.

Source code in src/delphyne/stdlib/queries.py
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
def run_toplevel(
    self,
    env: PolicyEnv,
    policy: pol.PromptingPolicy,
) -> Stream[T]:
    """
    Obtain a search stream of query answers, given a prompting
    policy.
    """
    attached = dp.spawn_standalone_query(self)
    return policy(attached, env)

Parser dataclass

A parser specification.

In addition to a mapping from answers to answer type A, a parser also specifies query settings to be passed to oracles, along with special formatting instructions to be rendered into the prompt. Indeed, these components are typically tied and so specifying them together in a single place is clearer.

Attributes:

Name Type Description
settings QuerySettings

The query settings associated with the parser.

formatting FormattingMetadata

Formatting metadata.

parse Callable[[Answer], A]

The parsing function, which is allowed to raise the ParseError exception.

Source code in src/delphyne/stdlib/queries.py
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
@dataclass(frozen=True)
class Parser[A]:
    """
    A parser specification.

    In addition to a mapping from answers to answer type `A`, a parser
    also specifies query settings to be passed to oracles, along with
    special formatting instructions to be rendered into the prompt.
    Indeed, these components are typically tied and so specifying them
    together in a single place is clearer.

    Attributes:
        settings: The query settings associated with the parser.
        formatting: Formatting metadata.
        parse: The parsing function, which is allowed to raise
            the `ParseError` exception.
    """

    settings: dp.QuerySettings
    formatting: FormattingMetadata
    parse: Callable[[dp.Answer], A]

    def update_formatting(
        self, f: Callable[[FormattingMetadata], FormattingMetadata], /
    ) -> "Parser[A]":
        return replace(self, formatting=f(self.formatting))

    def map[B](
        self,
        f: Callable[[A], B | dp.ParseError],
        /,
        *,
        catch_exn: bool = False,
    ) -> "Parser[B]":
        """
        Apply a function to the parser's output.

        Arguments:
            f: The function to apply, which is allowed to raise or
                return `ParseError`.
            catch_exn: If `True`, any other exception raised by `f` is
                caught and wrapped into a `ParseError`.
        """

        def parse(ans: dp.Answer) -> B:
            res = self.parse(ans)
            try:
                ret = f(res)
            except dp.ParseError as e:
                raise e
            except Exception as e:
                if catch_exn:
                    raise dp.ParseError(description=str(e))
                else:
                    raise e
            if isinstance(ret, dp.ParseError):
                raise ret
            return ret

        return Parser(
            settings=self.settings, formatting=self.formatting, parse=parse
        )

    def validate(
        self,
        f: Callable[[A], dp.ParseError | None],
        /,
        *,
        catch_exn: bool = False,
    ) -> "Parser[A]":
        """
        Check that the parser's output satisfies a given property.

        If the property is satisfied, function `f` must return `None`.
        Otherwise, it may return or raise a `ParseError`.
        """

        def parse(ans: dp.Answer) -> A:
            res = self.parse(ans)
            try:
                opt_err = f(res)
            except dp.ParseError as e:
                raise e
            except Exception as e:
                if catch_exn:
                    raise dp.ParseError(description=str(e))
                else:
                    raise e
            if opt_err:
                raise opt_err
            return res

        return Parser(
            settings=self.settings, formatting=self.formatting, parse=parse
        )

    @property
    def wrap_errors(self) -> "Parser[A | WrappedParseError]":
        """
        Wrap parse errors into `WrappedParseError`.
        """

        def parse(ans: dp.Answer) -> A | WrappedParseError:
            try:
                return self.parse(ans)
            except dp.ParseError as e:
                return WrappedParseError(e)

        return Parser(
            settings=self.settings, formatting=self.formatting, parse=parse
        )

    def response_with[T: md.AbstractTool[Any]](
        self, tools: TypeAnnot[T]
    ) -> "Parser[Response[A, T]]":
        """
        Wrap answers into full `Response` objects.
        """

        tools_raw = dpi.union_components(tools)
        tools_types: list[type[md.AbstractTool[Any]]] = [
            a for a in tools_raw if issubclass(a, md.AbstractTool)
        ]
        assert len(tools_types) == len(tools_raw), (
            f"Invalid tools union: {tools}"
        )
        if self.settings.tools is None:
            tools_settings = dp.ToolSettings(
                tool_types=tools_types, force_tool_call=False
            )
        else:
            tools_settings = dp.ToolSettings(
                tool_types=[*tools_types, *self.settings.tools.tool_types],
                force_tool_call=self.settings.tools.force_tool_call,
            )
        settings = replace(self.settings, tools=tools_settings)

        def parse(ans: dp.Answer) -> Response[A, T]:
            # If the answer is one of the provided tool types, we
            # return. Otherwise, we call the parser recursively.
            tcs: list[T] = []
            for tc in ans.tool_calls:
                for t in tools_types:
                    if tc.name == t.tool_name():
                        tcs.append(_parse_or_raise(t, tc.args))
                        break
            if tcs:
                return Response[A, T](ans, ToolRequests(tcs))
            else:
                parsed = self.parse(ans)
                return Response[A, T](ans, FinalAnswer(parsed))

        return Parser(
            settings=settings, formatting=self.formatting, parse=parse
        )

    @property
    def response(self) -> "GenericParser":
        """
        Wrap answers into full `Response` objects.

        Return a `GenericParser` so that the list of supported tools can
        be extracted from the query's answer type.
        """

        def parser(annot: TypeAnnot[Any], /) -> Parser[Any]:
            assert typing.get_origin(annot) is Response, (
                f"Response type expected: {annot}"
            )
            args = typing.get_args(annot)
            assert len(args) == 2
            return self.response_with(args[1])

        return GenericParser(parser)

    @property
    def trim(self: "Parser[str]") -> "Parser[str]":
        """
        Trim the output of a string parser.
        """
        return self.map(str.strip)

    @property
    def json(self: "Parser[str]") -> "GenericParser":
        """
        Parse a string as a JSON object.

        Return a `GenericParser` so that the target type can be
        extracted from the query's answer type.
        """

        return GenericParser(self.json_as)

    @property
    def yaml(self: "Parser[str]") -> "GenericParser":
        """
        Parse a string as a YAML object.

        Return a `GenericParser` so that the target type can be
        extracted from the query's answer type.
        """

        return GenericParser(self.yaml_as)

    def json_as[U](self: "Parser[str]", type: TypeAnnot[U]) -> "Parser[U]":
        """
        Parse a string as a JSON object.

        !!! info
            This method currently does not work very well with type
            inference since its arguments do not allow inferring the
            type of `U`. This should work better once `TypeAnnot` can be
            replaced with `TypeExpr` (incoming in Python 3.14).
        """

        _assert_not_response_type(type, where="json_as")
        schema = md.Schema.make(type)
        return self.map(partial(_parse_json_as, type)).update_formatting(
            lambda f: replace(f, what="json", schema=schema)
        )

    def yaml_as[U](self: "Parser[str]", type: TypeAnnot[U]) -> "Parser[U]":
        """
        Parse a string as a YAML object.

        !!! info
            This method currently does not work very well with type
            inference since its arguments do not allow inferring the
            type of `U`. This should work better once `TypeAnnot` can be
            replaced with `TypeExpr` (incoming in Python 3.14).
        """
        _assert_not_response_type(type, where="yaml_as")
        schema = md.Schema.make(type)
        return self.map(partial(_parse_yaml_as, type)).update_formatting(
            lambda f: replace(f, what="yaml", schema=schema)
        )

wrap_errors property

wrap_errors: Parser[A | WrappedParseError]

Wrap parse errors into WrappedParseError.

response property

response: GenericParser

Wrap answers into full Response objects.

Return a GenericParser so that the list of supported tools can be extracted from the query's answer type.

trim property

trim: Parser[str]

Trim the output of a string parser.

json property

Parse a string as a JSON object.

Return a GenericParser so that the target type can be extracted from the query's answer type.

yaml property

Parse a string as a YAML object.

Return a GenericParser so that the target type can be extracted from the query's answer type.

map

map(f: Callable[[A], B | ParseError], /, *, catch_exn: bool = False) -> Parser[B]

Apply a function to the parser's output.

Parameters:

Name Type Description Default
f Callable[[A], B | ParseError]

The function to apply, which is allowed to raise or return ParseError.

required
catch_exn bool

If True, any other exception raised by f is caught and wrapped into a ParseError.

False
Source code in src/delphyne/stdlib/queries.py
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
def map[B](
    self,
    f: Callable[[A], B | dp.ParseError],
    /,
    *,
    catch_exn: bool = False,
) -> "Parser[B]":
    """
    Apply a function to the parser's output.

    Arguments:
        f: The function to apply, which is allowed to raise or
            return `ParseError`.
        catch_exn: If `True`, any other exception raised by `f` is
            caught and wrapped into a `ParseError`.
    """

    def parse(ans: dp.Answer) -> B:
        res = self.parse(ans)
        try:
            ret = f(res)
        except dp.ParseError as e:
            raise e
        except Exception as e:
            if catch_exn:
                raise dp.ParseError(description=str(e))
            else:
                raise e
        if isinstance(ret, dp.ParseError):
            raise ret
        return ret

    return Parser(
        settings=self.settings, formatting=self.formatting, parse=parse
    )

validate

validate(
    f: Callable[[A], ParseError | None], /, *, catch_exn: bool = False
) -> Parser[A]

Check that the parser's output satisfies a given property.

If the property is satisfied, function f must return None. Otherwise, it may return or raise a ParseError.

Source code in src/delphyne/stdlib/queries.py
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
def validate(
    self,
    f: Callable[[A], dp.ParseError | None],
    /,
    *,
    catch_exn: bool = False,
) -> "Parser[A]":
    """
    Check that the parser's output satisfies a given property.

    If the property is satisfied, function `f` must return `None`.
    Otherwise, it may return or raise a `ParseError`.
    """

    def parse(ans: dp.Answer) -> A:
        res = self.parse(ans)
        try:
            opt_err = f(res)
        except dp.ParseError as e:
            raise e
        except Exception as e:
            if catch_exn:
                raise dp.ParseError(description=str(e))
            else:
                raise e
        if opt_err:
            raise opt_err
        return res

    return Parser(
        settings=self.settings, formatting=self.formatting, parse=parse
    )

response_with

response_with(tools: TypeAnnot[T]) -> Parser[Response[A, T]]

Wrap answers into full Response objects.

Source code in src/delphyne/stdlib/queries.py
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
def response_with[T: md.AbstractTool[Any]](
    self, tools: TypeAnnot[T]
) -> "Parser[Response[A, T]]":
    """
    Wrap answers into full `Response` objects.
    """

    tools_raw = dpi.union_components(tools)
    tools_types: list[type[md.AbstractTool[Any]]] = [
        a for a in tools_raw if issubclass(a, md.AbstractTool)
    ]
    assert len(tools_types) == len(tools_raw), (
        f"Invalid tools union: {tools}"
    )
    if self.settings.tools is None:
        tools_settings = dp.ToolSettings(
            tool_types=tools_types, force_tool_call=False
        )
    else:
        tools_settings = dp.ToolSettings(
            tool_types=[*tools_types, *self.settings.tools.tool_types],
            force_tool_call=self.settings.tools.force_tool_call,
        )
    settings = replace(self.settings, tools=tools_settings)

    def parse(ans: dp.Answer) -> Response[A, T]:
        # If the answer is one of the provided tool types, we
        # return. Otherwise, we call the parser recursively.
        tcs: list[T] = []
        for tc in ans.tool_calls:
            for t in tools_types:
                if tc.name == t.tool_name():
                    tcs.append(_parse_or_raise(t, tc.args))
                    break
        if tcs:
            return Response[A, T](ans, ToolRequests(tcs))
        else:
            parsed = self.parse(ans)
            return Response[A, T](ans, FinalAnswer(parsed))

    return Parser(
        settings=settings, formatting=self.formatting, parse=parse
    )

json_as

json_as(type: TypeAnnot[U]) -> Parser[U]

Parse a string as a JSON object.

Info

This method currently does not work very well with type inference since its arguments do not allow inferring the type of U. This should work better once TypeAnnot can be replaced with TypeExpr (incoming in Python 3.14).

Source code in src/delphyne/stdlib/queries.py
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def json_as[U](self: "Parser[str]", type: TypeAnnot[U]) -> "Parser[U]":
    """
    Parse a string as a JSON object.

    !!! info
        This method currently does not work very well with type
        inference since its arguments do not allow inferring the
        type of `U`. This should work better once `TypeAnnot` can be
        replaced with `TypeExpr` (incoming in Python 3.14).
    """

    _assert_not_response_type(type, where="json_as")
    schema = md.Schema.make(type)
    return self.map(partial(_parse_json_as, type)).update_formatting(
        lambda f: replace(f, what="json", schema=schema)
    )

yaml_as

yaml_as(type: TypeAnnot[U]) -> Parser[U]

Parse a string as a YAML object.

Info

This method currently does not work very well with type inference since its arguments do not allow inferring the type of U. This should work better once TypeAnnot can be replaced with TypeExpr (incoming in Python 3.14).

Source code in src/delphyne/stdlib/queries.py
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
def yaml_as[U](self: "Parser[str]", type: TypeAnnot[U]) -> "Parser[U]":
    """
    Parse a string as a YAML object.

    !!! info
        This method currently does not work very well with type
        inference since its arguments do not allow inferring the
        type of `U`. This should work better once `TypeAnnot` can be
        replaced with `TypeExpr` (incoming in Python 3.14).
    """
    _assert_not_response_type(type, where="yaml_as")
    schema = md.Schema.make(type)
    return self.map(partial(_parse_yaml_as, type)).update_formatting(
        lambda f: replace(f, what="yaml", schema=schema)
    )

GenericParser dataclass

A mapping from a query's answer type to a parser specification.

This is useful to avoid redundancy when specifying parsers. In particular, it allows writing:

@dataclass
class MyQuery(Query[Response[Out, Tool1 | Tool2]]):
    ...
    __parser__ = last_block.yaml.response

instead of:

__parser__ = last_block.yaml_as(Out).response_with(Tool1 | Tool2)

Attributes:

Name Type Description
for_type _GenericParserFn

A function that takes a type annotation and returns a Parser for this type.

Source code in src/delphyne/stdlib/queries.py
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
@dataclass(frozen=True)
class GenericParser:
    """
    A mapping from a query's answer type to a parser specification.

    This is useful to avoid redundancy when specifying parsers. In
    particular, it allows writing:

    ```python
    @dataclass
    class MyQuery(Query[Response[Out, Tool1 | Tool2]]):
        ...
        __parser__ = last_block.yaml.response
    ```

    instead of:

    ```python
    __parser__ = last_block.yaml_as(Out).response_with(Tool1 | Tool2)
    ```

    Attributes:
        for_type: A function that takes a type annotation and returns a
            `Parser` for this type.
    """

    for_type: "_GenericParserFn"

    @property
    def wrap_errors(self) -> "GenericParser":
        """
        Wrap parse errors into `WrappedParseError`.

        A runtime check is performed to ensure that the answer type
        features `WrappedParseError`.
        """

        def parser(annot: TypeAnnot[Any], /) -> Parser[Any]:
            comps = dpi.union_components(annot)
            assert len(comps) >= 2 and WrappedParseError in comps, (
                "Answer type does not have shape `... | WrappedParseError`: "
                + f"{annot}"
            )
            annot = dpi.make_union(
                [c for c in comps if c != WrappedParseError]
            )
            return self.for_type(annot).wrap_errors

        return GenericParser(parser)

    @property
    def response(self) -> "GenericParser":
        """
        Wrap answers into full `Response` objects.

        Possible tool calls are extracted from the query's answer type
        and an exception is raised if this type does not have the form
        `Response[..., ...]`.
        """

        def parser(annot: TypeAnnot[Any], /) -> Parser[Any]:
            assert typing.get_origin(annot) is Response, (
                f"Response type expected: {annot}"
            )
            args = typing.get_args(annot)
            assert len(args) == 2
            return self.for_type(args[0]).response_with(args[1])

        return GenericParser(parser)

wrap_errors property

wrap_errors: GenericParser

Wrap parse errors into WrappedParseError.

A runtime check is performed to ensure that the answer type features WrappedParseError.

response property

response: GenericParser

Wrap answers into full Response objects.

Possible tool calls are extracted from the query's answer type and an exception is raised if this type does not have the form Response[..., ...].

_GenericParserFn

Bases: Protocol

Type of functions wrapped by GenericParser.

Source code in src/delphyne/stdlib/queries.py
483
484
485
486
487
488
class _GenericParserFn(Protocol):
    """
    Type of functions wrapped by `GenericParser`.
    """

    def __call__[T](self, type: TypeAnnot[T], /) -> Parser[T]: ...

ParserDict

ParserDict = dict[AnswerMode, Parser[Any] | GenericParser]

A mapping from answer modes to parser specifications.

Can be used as a value for the __parser__ class attribute of queries.

Response dataclass

Answer type for queries that allow follow-ups.

Response values give access to both the raw LLM response (to be passed pass in AnswerPrefix) and to eventual tool calls. See the Parser.response, Parser.response_with, and GenericParser.response methods for creating parsers that produce Response values.

Attributes:

Name Type Description
answer Answer

The raw, unparsed LLM answer.

parsed FinalAnswer[F] | ToolRequests[T]

Either the parsed answer wrapped in FinalAnswer or some tool call requests wrapped in ToolRequests.

Source code in src/delphyne/stdlib/queries.py
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
@dataclass(frozen=True)
class Response[F, T: md.AbstractTool[Any]]:
    """
    Answer type for queries that allow follow-ups.

    `Response` values give access to both the raw LLM response (to be
    passed pass in `AnswerPrefix`) and to eventual tool calls. See the
    `Parser.response`, `Parser.response_with`, and
    `GenericParser.response` methods for creating parsers that produce
    `Response` values.

    Attributes:
        answer: The raw, unparsed LLM answer.
        parsed: Either the parsed answer wrapped in `FinalAnswer` or
            some tool call requests wrapped in `ToolRequests`.
    """

    answer: dp.Answer
    parsed: FinalAnswer[F] | ToolRequests[T]

FinalAnswer dataclass

See Response.

Source code in src/delphyne/stdlib/queries.py
86
87
88
89
90
91
92
@dataclass(frozen=True)
class FinalAnswer[F]:
    """
    See `Response`.
    """

    final: F

ToolRequests dataclass

See Response.

Source code in src/delphyne/stdlib/queries.py
 95
 96
 97
 98
 99
100
101
@dataclass(frozen=True)
class ToolRequests[T: md.AbstractTool[Any]]:
    """
    See `Response`.
    """

    tool_calls: Sequence[T]

WrappedParseError dataclass

A wrapped parse error that is returned to a strategy instead of causing a failure.

For queries that declare a return type of the form Response[... | WrappedParseError, ...], parse errors do not result in failures but are instead wrapped and returned, to be handled explicitly by the surrounding strategy. For example, when building conversational agents with interact, having the query include WrappedParseError in its return type allows explicitly asking the agent to fix parse errors instead of failing (or having the policy retry an identical prompt).

See the Parser.wrap_errors and GenericParser.wrap_errors methods for creating parsers that produce WrappedParseError values.

Attributes:

Name Type Description
error ParseError

The wrapped parse error.

Source code in src/delphyne/stdlib/queries.py
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
@dataclass
class WrappedParseError:
    """
    A wrapped parse error that is returned to a strategy instead of
    causing a failure.

    For queries that declare a return type of the form `Response[... |
    WrappedParseError, ...]`, parse errors do not result in failures but
    are instead wrapped and returned, to be handled explicitly by the
    surrounding strategy. For example, when building conversational
    agents with `interact`, having the query include `WrappedParseError`
    in its return type allows explicitly asking the agent to fix parse
    errors instead of failing (or having the policy retry an identical
    prompt).

    See the `Parser.wrap_errors` and `GenericParser.wrap_errors` methods
    for creating parsers that produce `WrappedParseError` values.

    Attributes:
        error: The wrapped parse error.
    """

    error: dp.ParseError

QueryTemplateArgs

Bases: TypedDict

Template arguments passed to all query templates.

For particular kinds of templates, additional arguments may be provided (e.g., feedback for feedback prompts).

Attributes:

Name Type Description
query Query[Any]

The query instance.

mode AnswerMode

The requested answer mode. In a multi-message chat with few-shot examples, this variable can have different values across examples. Also, it has the same value for the system prompt and the final instance prompt.

available_modes Sequence[AnswerMode]

The sequence of all available answer modes for the query type.

params dict[str, Any]

The query hyperparameters (e.g., as passed to few_shot)

format FormattingMetadata

Formatting metadata, as derived from mode (and whose value may therefore differ across examples).

example_id int | None

If the message is part of an example, indicate the example number (examples are numbered starting from 1). Otherwise, indicate None. For example, this can be used to prefix each example with a # Example {i} header.

example bool

Whether or not the message is part of an example (redundant with example_id, provided for readability). For example, when using a hyperparameter from params to provide specific answer instructions, one may want to include the specific instructions only in the final instance prompt and not in examples.

Source code in src/delphyne/stdlib/queries.py
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
class QueryTemplateArgs(typing.TypedDict):
    """
    Template arguments passed to all query templates.

    For particular kinds of templates, additional arguments may be
    provided (e.g., `feedback` for feedback prompts).

    Attributes:
        query: The query instance.
        mode: The requested answer mode. In a multi-message chat with
            few-shot examples, this variable can have different values
            across examples. Also, it has the same value for the system
            prompt and the final instance prompt.
        available_modes: The sequence of all available answer modes for
            the query type.
        params: The query hyperparameters (e.g., as passed to `few_shot`)
        format: Formatting metadata, as derived from `mode` (and whose
            value may therefore differ across examples).
        example_id: If the message is part of an example, indicate the
            example number (examples are numbered starting from 1).
            Otherwise, indicate `None`. For example, this can be used to
            prefix each example with a `# Example {i}` header.
        example: Whether or not the message is part of an example
            (redundant with `example_id`, provided for readability). For
            example, when using a hyperparameter from `params` to
            provide specific answer instructions, one may want to
            include the specific instructions only in the final instance
            prompt and not in examples.
    """

    # TODO: in future Python versions, use `extra_items=Any` (PEP 728)

    query: "Query[Any]"
    mode: dp.AnswerMode
    available_modes: Sequence[dp.AnswerMode]
    params: dict[str, Any]
    format: FormattingMetadata
    example_id: int | None
    example: bool

Standard Parsers

structured_as

structured_as(type: TypeAnnot[T]) -> Parser[T]

Parse an LLM structured answer into a given target type.

Warning

Only dataclass types are supported, since most LLM providers only support structured output and tool calls for JSON objects.

Source code in src/delphyne/stdlib/queries.py
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
def structured_as[T](type: TypeAnnot[T], /) -> Parser[T]:
    """
    Parse an LLM structured answer into a given target type.

    !!! warning
        Only dataclass types are supported, since most LLM providers
        only support structured output and tool calls for JSON objects.
    """
    _assert_not_response_type(type, where="structured_as")
    _check_valid_structured_output_type(type)
    settings = dp.QuerySettings(dp.StructuredOutputSettings(type))
    formatting = FormattingMetadata(
        where="full_answer", what="json", schema=md.Schema.make(type)
    )
    return Parser(
        settings, formatting, lambda ans: _parse_structured_output(type, ans)
    )

final_tool_call_as

final_tool_call_as(annot: TypeAnnot[T]) -> Parser[T]

Variant of structured_as, where the query answer type is presented to oracles as a tool, which must be called to produce the final answer. This provides an alternative to "structured", which additionally allows a chain of thoughts to precede the final answer.

Warning

Only dataclass types are supported, since most LLM providers only support structured output and tool calls for JSON objects.

Source code in src/delphyne/stdlib/queries.py
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
def final_tool_call_as[T](annot: TypeAnnot[T], /) -> Parser[T]:
    """
    Variant of `structured_as`, where the query answer type is presented
    to oracles as a tool, which must be called to produce the final
    answer. This provides an alternative to "structured", which
    additionally allows a chain of thoughts to precede the final answer.

    !!! warning
        Only dataclass types are supported, since most LLM providers
        only support structured output and tool calls for JSON objects.
    """
    _check_valid_structured_output_type(annot)
    assert isinstance(annot, type)  # redundant with previous check
    tool = cast(type[Any], annot)
    tool_settings = dp.ToolSettings(tool_types=[tool], force_tool_call=True)
    settings = dp.QuerySettings(None, tool_settings)
    formatting = FormattingMetadata(
        where="tool_call", what="json", schema=md.Schema.make(annot)
    )

    def parse(ans: dp.Answer) -> T:
        assert len(ans.tool_calls) == 1, (
            f"Expected one final tool call, got answer: {ans}"
        )
        return _parse_or_raise(tool, ans.tool_calls[0].args)

    return Parser(settings, formatting, parse)

structured module-attribute

Generic parser associated with structured_as.

final_tool_call module-attribute

final_tool_call = GenericParser(final_tool_call_as)

Generic parser associated with final_tool_call_as.

last_code_block module-attribute

last_code_block: Parser[str] = update_formatting(
    lambda f: replace(f, where="last_code_block")
)

Parser that extracts the last code block from a text answer.

get_text module-attribute

get_text = Parser[str](
    QuerySettings(),
    FormattingMetadata(where="full_answer", what="text"),
    _get_text_answer,
)

Parser that extracts the text content of an answer.

A runtime error is raised if the answer contains structured content.

Prompting Policies

few_shot

few_shot(
    query: AttachedQuery[T],
    env: PolicyEnv,
    model: LLM,
    *,
    params: dict[str, object] | None = None,
    select_examples: Sequence[ExampleSelector] = (),
    mode: AnswerMode = None,
    temperature: float | None = None,
    num_completions: int = 1,
    max_requests: int | None = None,
    no_wrap_parse_errors: bool = False,
    iterative_mode: bool = False,
) -> StreamGen[T]

The standard few-shot prompting policy.

A prompt is formed by concatenating a system prompt, a series of examples (each of which consists in an instance prompt followed by an answer), and a final answer prompt. Then, answers are repeatedly sampled and parsed, until a spending request is declined.

Parameters:

Name Type Description Default
query AttachedQuery[T]

The query to answer. env: The policy environment.

required
model LLM

The LLM to use for answering the query

required
params dict[str, object] | None

Prompt hyperparameters, which are passed to prompt templates as a params dictionary.

None
select_examples Sequence[ExampleSelector]

A series of filters for selecting examples, to be applied in sequence. By default, no filter is used and so all available examples are fetched.

()
mode AnswerMode

The answer mode to use for parsing the query answer.

None
temperature float | None

The temperature parameter to use with the LLM, as a number from 0 to 2.

None
num_completions int

The number of completions to request for each LLM call. Note that most LLM providers only bill input tokens once, regardless of the number of completions.

1
max_requests int | None

The maximum number of LLM requests to perform before the resulting seach stream terminates, if any.

None
no_wrap_parse_errors bool

If set to True, then parser results of type WrappedParseError are unwrapped and treated as normal parse errors.

False
iterative_mode bool

If set to False (default), answers are repeatedly and independently sampled. If set to True, a single chat conversation occurs instead: Whenever a parse error occurs, a message is issued by rendering the <QueryName>.repair.jinja template, asking for a new attempt to be made (the ParseError object is available as an error template variable). After an answer is successfully generated and parsed, a message is issued by rendering the <QueryName>.more.jinja template, asking for another different answer to be generated.

This special mode allows creating simple conversational agents with very little effort, by only defining a single query. However, it does not support tool calls, and the demonstration language cannot be used to illustrate how repair and more messages should be handled. For implementing more advanced conversational agents, see the standard interact strategy.

False
Source code in src/delphyne/stdlib/queries.py
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
@prompting_policy
def few_shot[T](
    query: dp.AttachedQuery[T],
    env: PolicyEnv,
    model: md.LLM,
    *,
    params: dict[str, object] | None = None,
    select_examples: Sequence[ExampleSelector] = (),
    mode: dp.AnswerMode = None,
    temperature: float | None = None,
    num_completions: int = 1,
    max_requests: int | None = None,
    no_wrap_parse_errors: bool = False,
    iterative_mode: bool = False,
) -> dp.StreamGen[T]:
    """
    The standard few-shot prompting policy.

    A prompt is formed by concatenating a system prompt, a series of
    examples (each of which consists in an instance prompt followed by
    an answer), and a final answer prompt. Then, answers are repeatedly
    sampled and parsed, until a spending request is declined.

    Arguments:
        query: The query to answer. env: The policy environment.
        model: The LLM to use for answering the query
        params: Prompt hyperparameters, which are passed to prompt
            templates as a `params` dictionary.
        select_examples: A series of filters for selecting examples, to
            be applied in sequence. By default, no filter is used and so
            all available examples are fetched.
        mode: The answer mode to use for parsing the query answer.
        temperature: The temperature parameter to use with the LLM, as a
            number from 0 to 2.
        num_completions: The number of completions to request for each
            LLM call. Note that most LLM providers only bill input
            tokens once, regardless of the number of completions.
        max_requests: The maximum number of LLM requests to perform
            before the resulting seach stream terminates, if any.
        no_wrap_parse_errors: If set to `True`, then parser results of
            type `WrappedParseError` are unwrapped and treated as normal
            parse errors.
        iterative_mode: If set to `False` (default), answers are
            repeatedly and independently sampled. If set to `True`, a
            single chat conversation occurs instead: Whenever a parse
            error occurs, a message is issued by rendering the
            `<QueryName>.repair.jinja` template, asking for a new
            attempt to be made (the `ParseError` object is available as
            an `error` template variable). After an answer is
            successfully generated and parsed, a message is issued by
            rendering the `<QueryName>.more.jinja` template, asking for
            another different answer to be generated.

            This special mode allows creating simple conversational
            agents with very little effort, by only defining a single
            query. However, it does not support tool calls, and the
            demonstration language cannot be used to illustrate how
            `repair` and `more` messages should be handled. For
            implementing more advanced conversational agents, see
            the standard `interact` strategy.
    """
    assert not iterative_mode or num_completions == 1
    assert max_requests is None or max_requests > 0
    env.tracer.trace_query(query.ref)
    examples = fetch_examples(env.examples, query.query, select_examples)
    mngr = env.templates
    if params is None:
        params = {}
    prompt = create_prompt(query.query, examples, params, mode, mngr)
    settings = query.query.query_settings(mode)
    options: md.RequestOptions = {}
    if temperature is not None:
        options["temperature"] = temperature
    structured_output = None
    if settings.structured_output is not None:
        out_type = settings.structured_output.type
        structured_output = md.Schema.make(out_type)
    tools = []
    if settings.tools is not None:
        if settings.tools.force_tool_call:
            options["tool_choice"] = "required"
        tools = [md.Schema.make(t) for t in settings.tools.tool_types]
    num_reqs = 0
    while max_requests is None or num_reqs < max_requests:
        num_reqs += 1
        req = md.LLMRequest(
            prompt,
            num_completions=num_completions,
            options=options,
            tools=tuple(tools),
            structured_output=structured_output,
        )
        resp = yield from _send_request(
            env, model=model, request=req, query=query
        )
        if isinstance(resp, SpendingDeclined):
            return
        if not resp.outputs:
            env.warn("llm_no_output", loc=query)
            continue
        elements: list[dp.Tracked[T] | dp.ParseError] = []
        answers: list[dp.Answer] = []
        for output in resp.outputs:
            answer = dp.Answer(mode, output.content, tuple(output.tool_calls))
            answers.append(answer)
            element = query.parse_answer(answer)
            if no_wrap_parse_errors:
                element = _unwrap_parse_error(element)
            env.tracer.trace_answer(query.ref, answer)
            if isinstance(element, dp.ParseError):
                env.info("parse_error", {"error": element}, loc=query)
            elements.append(element)
        for element in elements:
            if not isinstance(element, dp.ParseError):
                yield dp.Solution(element)
        # In iterative mode, we want to keep the conversation going
        if iterative_mode:
            assert len(elements) == 1 and len(answers) == 1
            element = elements[0]
            if isinstance(element, dp.ParseError):
                try:
                    repair = query.query.generate_prompt(
                        kind=REPAIR_PROMPT,
                        mode=mode,
                        params={"params": params, "error": element},
                        env=mngr,
                    )
                except dp.TemplateFileMissing:
                    repair = (
                        "Invalid answer. Please consider the following"
                        + f" feedback and try again:\n\n{element}"
                    )
                new_message = md.UserMessage(repair)
            else:
                try:
                    gen_new = query.query.generate_prompt(
                        kind=REQUEST_OTHER_PROMPT,
                        mode=mode,
                        params={"params": params},
                        env=mngr,
                    )
                except dp.TemplateFileMissing:
                    gen_new = "Good! Can you generate a different answer now?"
                new_message = md.UserMessage(gen_new)

            prompt = (*prompt, md.AssistantMessage(answers[0]), new_message)

classify

classify(
    query: AttachedQuery[T],
    env: PolicyEnv,
    model: LLM,
    params: dict[str, object] | None = None,
    select_examples: Sequence[ExampleSelector] = (),
    mode: AnswerMode = None,
    top_logprobs: int = 20,
    temperature: float = 1.0,
    bias: tuple[str, float] | None = None,
) -> StreamGen[T]

Execute a classification query, attaching a probability distribution to the attached answer.

Parameters:

Name Type Description Default
query AttachedQuery[T]

The query to answer.

required
env PolicyEnv

The global policy environment.

required
model LLM

The LLM to use for answering the query.

required
params dict[str, object] | None

Prompt hyperparameters.

None
select_examples Sequence[ExampleSelector]

Example selector.

()
mode AnswerMode

The answer mode to use for parsing the query answer.

None
top_logprobs int

The number of top logprobs to request from the LLM, putting an upper bound on the support size of the classifier's output distributions.

20
temperature float

A temperature to apply to the classifier's output distribution (a temperature of 0 means that only top elements are assigned a nonzero probability).

1.0
bias tuple[str, float] | None

When bias=(e, p) is provided, the final classifier distribution D is transformed into (1-p)*D + p*dirac(e)

None

See few_shot for details on some of the arguments above.

Source code in src/delphyne/stdlib/queries.py
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
@prompting_policy
def classify[T](
    query: dp.AttachedQuery[T],
    env: PolicyEnv,
    model: md.LLM,
    params: dict[str, object] | None = None,
    select_examples: Sequence[ExampleSelector] = (),
    mode: dp.AnswerMode = None,
    top_logprobs: int = 20,
    temperature: float = 1.0,
    bias: tuple[str, float] | None = None,
) -> dp.StreamGen[T]:
    """
    Execute a classification query, attaching a probability distribution
    to the attached answer.

    Arguments:
        query: The query to answer.
        env: The global policy environment.
        model: The LLM to use for answering the query.
        params: Prompt hyperparameters.
        select_examples: Example selector.
        mode: The answer mode to use for parsing the query answer.
        top_logprobs: The number of top logprobs to request from the
            LLM, putting an upper bound on the support size of the
            classifier's output distributions.
        temperature: A temperature to apply to the classifier's output
            distribution (a temperature of 0 means that only top
            elements are assigned a nonzero probability).
        bias: When `bias=(e, p)` is provided, the final classifier
            distribution `D` is transformed into `(1-p)*D + p*dirac(e)`

    See `few_shot` for details on some of the arguments above.
    """
    env.tracer.trace_query(query.ref)
    examples = fetch_examples(env.examples, query.query, select_examples)
    mngr = env.templates
    if params is None:
        params = {}
    prompt = create_prompt(query.query, examples, params, mode, mngr)
    aset = query.query.finite_answer_set()
    assert aset is not None
    vals: list[str] = []
    for a in aset:
        assert isinstance(a.content, str)
        vals.append(a.content)
    options: md.RequestOptions = {
        "logprobs": True,
        "top_logprobs": top_logprobs,
        # TODO: somehow, there seems to be a problem with this, where
        # one can get an empty answer with "finish_reason: length":
        # "max_completion_tokens": 1,
        "temperature": 0.0,
    }
    req = md.LLMRequest(
        prompt,
        num_completions=1,
        options=options,
    )
    resp = yield from _send_request(env, model=model, request=req, query=query)
    if isinstance(resp, SpendingDeclined):
        return
    if not resp.outputs:
        return
    output = resp.outputs[0]
    answer = dp.Answer(mode, output.content)
    env.tracer.trace_answer(query.ref, answer)
    parse = partial(_parse_or_log_and_raise, query=query, env=env)
    try:
        element = parse(answer)
        lpinfo = output.logprobs
        assert lpinfo is not None
        ldistr = _compute_value_distribution(vals, lpinfo[0])
        if not ldistr:
            assert isinstance(output.content, str)
            ldistr = {output.content: 0.0}
        distr = _apply_temperature(ldistr, temperature)
        if bias is not None:
            distr = _apply_bias(distr, bias)
        distr_tup = [(parse(dp.Answer(mode, k)), p) for k, p in distr.items()]
        meta = ProbInfo(distr_tup)
        yield dp.Solution(element, meta)
    except dp.ParseError:
        return

ProbInfo dataclass

Bases: SearchMeta

Distribution probability, guaranteed to be nonempty and to sum to 1.

Source code in src/delphyne/stdlib/queries.py
1256
1257
1258
1259
1260
1261
1262
@dataclass
class ProbInfo(dp.SearchMeta):
    """
    Distribution probability, guaranteed to be nonempty and to sum to 1.
    """

    distr: Sequence[tuple[dp.Tracked[Any], float]]

Models

LLM

Bases: ABC

Base class for an LLM.

Source code in src/delphyne/stdlib/models.py
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
class LLM(ABC):
    """
    Base class for an LLM.
    """

    def estimate_budget(self, req: LLMRequest) -> Budget:
        """
        Estimate the budget that is required to process a request.
        """
        return Budget({NUM_REQUESTS: 1, NUM_COMPLETIONS: req.num_completions})

    @abstractmethod
    def add_model_defaults(self, req: LLMRequest) -> LLMRequest:
        """
        Rewrite a request to take model-specific defaults into account.

        A model can carry default values for some of the request fields
        (e.g. the model name). Thus, requests must be processed through
        this function right before they are executed or cached.
        """
        pass

    @abstractmethod
    def _send_final_request(self, req: LLMRequest) -> LLMResponse:
        """
        Core method for processing a request.

        To be overriden by subclasses to implement the core
        functionality of `send_request`. The latter additionally handles
        model=specific defaults and caching.

        This function is allowed to raise exceptions (some
        provider-specific), including `LLMBusyException` for cases where
        retrials may be warranted.
        """
        pass

    def stream_request(
        self, chat: Chat, options: RequestOptions
    ) -> AsyncIterable[str]:
        """
        Stream the text answer to a request.

        This is currently not used but could be leveraged by the VSCode
        extension in the future.
        """
        raise StreamingNotImplemented()

    @final
    def send_request(
        self, req: LLMRequest, cache: "LLMCache | None"
    ) -> LLMResponse:
        """
        Send a request to a model and return the response.

        This function is allowed to raise exceptions (some
        provider-specific), including `LLMBusyException` for cases where
        retrials may be warranted.

        Attributes:
            req: The request to send.
            cache: An optional cache to use for the request.
        """
        if cache is not None:
            self = CachedModel(self, cache)
        full_req = self.add_model_defaults(req)
        return self._send_final_request(full_req)

estimate_budget

estimate_budget(req: LLMRequest) -> Budget

Estimate the budget that is required to process a request.

Source code in src/delphyne/stdlib/models.py
451
452
453
454
455
def estimate_budget(self, req: LLMRequest) -> Budget:
    """
    Estimate the budget that is required to process a request.
    """
    return Budget({NUM_REQUESTS: 1, NUM_COMPLETIONS: req.num_completions})

add_model_defaults abstractmethod

add_model_defaults(req: LLMRequest) -> LLMRequest

Rewrite a request to take model-specific defaults into account.

A model can carry default values for some of the request fields (e.g. the model name). Thus, requests must be processed through this function right before they are executed or cached.

Source code in src/delphyne/stdlib/models.py
457
458
459
460
461
462
463
464
465
466
@abstractmethod
def add_model_defaults(self, req: LLMRequest) -> LLMRequest:
    """
    Rewrite a request to take model-specific defaults into account.

    A model can carry default values for some of the request fields
    (e.g. the model name). Thus, requests must be processed through
    this function right before they are executed or cached.
    """
    pass

stream_request

stream_request(chat: Chat, options: RequestOptions) -> AsyncIterable[str]

Stream the text answer to a request.

This is currently not used but could be leveraged by the VSCode extension in the future.

Source code in src/delphyne/stdlib/models.py
483
484
485
486
487
488
489
490
491
492
def stream_request(
    self, chat: Chat, options: RequestOptions
) -> AsyncIterable[str]:
    """
    Stream the text answer to a request.

    This is currently not used but could be leveraged by the VSCode
    extension in the future.
    """
    raise StreamingNotImplemented()

send_request

send_request(req: LLMRequest, cache: LLMCache | None) -> LLMResponse

Send a request to a model and return the response.

This function is allowed to raise exceptions (some provider-specific), including LLMBusyException for cases where retrials may be warranted.

Attributes:

Name Type Description
req

The request to send.

cache

An optional cache to use for the request.

Source code in src/delphyne/stdlib/models.py
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
@final
def send_request(
    self, req: LLMRequest, cache: "LLMCache | None"
) -> LLMResponse:
    """
    Send a request to a model and return the response.

    This function is allowed to raise exceptions (some
    provider-specific), including `LLMBusyException` for cases where
    retrials may be warranted.

    Attributes:
        req: The request to send.
        cache: An optional cache to use for the request.
    """
    if cache is not None:
        self = CachedModel(self, cache)
    full_req = self.add_model_defaults(req)
    return self._send_final_request(full_req)

LLMRequest dataclass

An LLM chat completion request.

Attributes:

Name Type Description
chat Chat

The chat history.

num_completions int

The number of completions to generate. Note that most LLM providers only bill input tokens once, regardless of the number of requested completions.

options RequestOptions

Request options.

tools tuple[Schema, ...]

Available tools.

structured_output Schema | None

Provide a schema to enable structured output, or None for disabling it.

Note

This class is hashable, as needed by LLMCache. For soundness, it is assumed that RequestOptions dictionaries are immutable.

Source code in src/delphyne/stdlib/models.py
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
@dataclass(frozen=True)
class LLMRequest:
    """
    An LLM chat completion request.

    Attributes:
        chat: The chat history.
        num_completions: The number of completions to generate. Note
            that most LLM providers only bill input tokens once,
            regardless of the number of requested completions.
        options: Request options.
        tools: Available tools.
        structured_output: Provide a schema to enable structured output,
            or `None` for disabling it.

    !!! note
        This class is hashable, as needed by `LLMCache`. For soundness,
        it is assumed that `RequestOptions` dictionaries are immutable.
    """

    chat: Chat
    num_completions: int
    options: RequestOptions
    tools: tuple[Schema, ...] = ()
    structured_output: Schema | None = None

    def _hashable_repr(self) -> Any:
        import json

        return (
            self.chat,
            self.num_completions,
            json.dumps(self.options, sort_keys=True),
            self.tools,
            self.structured_output,
        )

    def __hash__(self) -> int:
        return hash(self._hashable_repr())

    def __eq__(self, other: object) -> bool:
        if not isinstance(other, LLMRequest):
            return NotImplemented
        return self._hashable_repr() == other._hashable_repr()

LLMResponse dataclass

Response to an LLM request.

Attributes:

Name Type Description
outputs Sequence[LLMOutput]

Generated completions.

budget Budget

Budget consumed by the request.

log_items list[LLMResponseLogItem]

Log items generated while evaluating the request.

model_name str | None

The name of the model used for the request, which is sometimes more detailed than the model name passed in RequestOptions (e.g., gpt-4.1-mini-2025-04-14 vs gpt-4.1-mini).

usage_info dict[str, Any] | None

Additional usage info metadata, in a provider-specific format.

Source code in src/delphyne/stdlib/models.py
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
@dataclass
class LLMResponse:
    """
    Response to an LLM request.

    Attributes:
        outputs: Generated completions.
        budget: Budget consumed by the request.
        log_items: Log items generated while evaluating the request.
        model_name: The name of the model used for the request, which is
            sometimes more detailed than the model name passed in
            `RequestOptions` (e.g., `gpt-4.1-mini-2025-04-14` vs
            `gpt-4.1-mini`).
        usage_info: Additional usage info metadata, in a
            provider-specific format.
    """

    outputs: Sequence[LLMOutput]
    budget: Budget
    log_items: list[LLMResponseLogItem]
    model_name: str | None = None
    usage_info: dict[str, Any] | None = None

AbstractTool

Base class for an LLM tool interface.

A new tool interface can be added by defining a dataclass S that inherits AbstractTool[T], with T the tool output type. Instances of S correspond to tool calls, and an actual tool implementation maps values of type S to values of type T.

A JSON tool specification can be extracted through the tool_name, tool_description and tool_answer_type class methods. The render_result method describes how to render the output of a tool implementation, in a way that can be added back as a message in a chat history.

Source code in src/delphyne/stdlib/models.py
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
class AbstractTool[T]:
    """
    Base class for an LLM tool interface.

    A new tool interface can be added by defining a dataclass `S` that
    inherits `AbstractTool[T]`, with `T` the tool output type. Instances
    of `S` correspond to tool calls, and an actual tool implementation
    maps values of type `S` to values of type `T`.

    A JSON tool specification can be extracted through the
    `tool_name`, `tool_description` and `tool_answer_type` class
    methods. The `render_result` method describes how to render the
    output of a tool implementation, in a way that can be added back as
    a message in a chat history.
    """

    @classmethod
    def tool_name(cls) -> str:
        return tool_name_of_class_name(cls.__name__)

    @classmethod
    def tool_description(cls) -> str | None:
        return inspect.getdoc(cls)

    @classmethod
    def tool_answer_type(cls) -> TypeAnnot[T]:
        return dpi.first_parameter_of_base_class(cls)

    def render_result(self, res: T) -> str | Structured:
        if isinstance(res, str):
            return res
        ans_type = self.tool_answer_type()
        return Structured(pydantic_dump(ans_type, res))

Chat

Chat = tuple[ChatMessage, ...]

ChatMessage

SystemMessage dataclass

Source code in src/delphyne/stdlib/models.py
80
81
82
83
84
85
86
87
88
@dataclass(frozen=True)
class SystemMessage:
    role: Literal["system"]  # for deserialization
    content: str

    def __init__(self, content: str):
        # to bypass the frozen dataclass check
        object.__setattr__(self, "role", "system")
        object.__setattr__(self, "content", content)

UserMessage dataclass

Source code in src/delphyne/stdlib/models.py
91
92
93
94
95
96
97
98
@dataclass(frozen=True)
class UserMessage:
    role: Literal["user"]
    content: str

    def __init__(self, content: str):
        object.__setattr__(self, "role", "user")
        object.__setattr__(self, "content", content)

AssistantMessage dataclass

Source code in src/delphyne/stdlib/models.py
101
102
103
104
105
106
107
108
109
@dataclass(frozen=True)
class AssistantMessage:
    role: Literal["assistant"]
    answer: Answer  # Note: the mode does not really matter for the LLM.

    def __init__(self, answer: Answer):
        # to bypass the frozen dataclass check
        object.__setattr__(self, "role", "assistant")
        object.__setattr__(self, "answer", answer)

ToolMessage dataclass

Source code in src/delphyne/stdlib/models.py
112
113
114
115
116
117
118
119
120
121
@dataclass(frozen=True)
class ToolMessage:
    role: Literal["tool"]
    call: ToolCall
    result: str | Structured

    def __init__(self, call: ToolCall, result: str | Structured):
        object.__setattr__(self, "role", "tool")
        object.__setattr__(self, "call", call)
        object.__setattr__(self, "result", result)

RequestOptions

Bases: TypedDict

LLM request options, inspired from the OpenAI chat API.

All values are optional.

Attributes:

Name Type Description
model str

The name of the model to use for the request.

reasoning_effort Literal['minimal', 'low', 'medium', 'high']

The reasoning effort to use for the request, when applicable (e.g., for GPT-5 or o3).

tool_choice Literal['auto', 'none', 'required']

How the model should select which tool (or tools) to use when generating a response. none means the model will not call any tool and instead generates a message. auto means the model can pick between generating a message or calling one or more tools. required means the model must call one or more tools.

temperature float

The temperature to use for sampling, as a value between 0 and 2.

max_completion_tokens int

The maximum number of tokens to generate.

logprobs bool

Whether to return log probabilities for the generated tokens.

top_logprobs int

The number of top log probabilities to return for each generated token, as an integer between 0 and 20.

Warning

Dictionaries of this type should be treated as immutable, since they are used as part of the hash of LLMRequest objects.

Source code in src/delphyne/stdlib/models.py
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
class RequestOptions(typing.TypedDict, total=False):
    """
    LLM request options, inspired from the OpenAI chat API.

    All values are optional.

    Attributes:
        model: The name of the model to use for the request.
        reasoning_effort: The reasoning effort to use for the request,
            when applicable (e.g., for GPT-5 or o3).
        tool_choice: How the model should select which tool (or tools)
            to use when generating a response. `none` means the model
            will not call any tool and instead generates a message.
            `auto` means the model can pick between generating a message
            or calling one or more tools. `required` means the model must
            call one or more tools.
        temperature: The temperature to use for sampling, as a value
            between 0 and 2.
        max_completion_tokens: The maximum number of tokens to generate.
        logprobs: Whether to return log probabilities for the generated
            tokens.
        top_logprobs: The number of top log probabilities to return for
            each generated token, as an integer between 0 and 20.

    !!! warning
        Dictionaries of this type should be treated as immutable, since
        they are used as part of the hash of `LLMRequest` objects.
    """

    model: str
    reasoning_effort: Literal["minimal", "low", "medium", "high"]
    tool_choice: Literal["auto", "none", "required"]
    temperature: float
    max_completion_tokens: int
    logprobs: bool
    top_logprobs: int  # from 0 to 20

Schema dataclass

The description of a schema for structured output or tool use.

Attributes:

Name Type Description
name str

Name of the tool or structured output type.

description str | None

Optional description.

schema Any

The JSON schema of the tool or structured output type, typically generated using pydantic's json_schema method.

Source code in src/delphyne/stdlib/models.py
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
@dataclass(frozen=True)
class Schema:
    """
    The description of a schema for structured output or tool use.

    Attributes:
        name: Name of the tool or structured output type.
        description: Optional description.
        schema: The JSON schema of the tool or structured output type,
            typically generated using pydantic's `json_schema` method.
    """

    name: str
    description: str | None
    schema: Any

    @staticmethod
    def make(annot: TypeAnnot[Any], /) -> "Schema":
        """
        Build a schema from a Python type annotation
        """
        if isinstance(annot, type):
            if issubclass(annot, AbstractTool):
                name = annot.tool_name()
                description = annot.tool_description()
            else:
                name = tool_name_of_class_name(annot.__name__)
                # For a dataclass, if no docstring is provided,
                # `inspect.getdoc` shows its signature (name, attribute
                # names and types).
                description = inspect.getdoc(cast(Any, annot))
        elif isinstance(annot, typing.TypeAliasType):
            # TODO: we can do better here.
            name = str(annot)
            description = None
        else:
            # Any other type annotation, such as a union.
            name = str(annot)
            description = None
        adapter = pydantic.TypeAdapter(cast(Any, annot))
        return Schema(
            name=name,
            description=description,
            schema=adapter.json_schema(),
        )

    def _hashable_repr(self) -> str:
        # See comment in ToolCall._hashable_repr
        import json

        return json.dumps(self.__dict__, sort_keys=True)

    def __hash__(self) -> int:
        return hash(self._hashable_repr())

    def __eq__(self, other: object) -> bool:
        if not isinstance(other, Schema):
            return NotImplemented
        return self._hashable_repr() == other._hashable_repr()

make staticmethod

make(annot: TypeAnnot[Any]) -> Schema

Build a schema from a Python type annotation

Source code in src/delphyne/stdlib/models.py
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
@staticmethod
def make(annot: TypeAnnot[Any], /) -> "Schema":
    """
    Build a schema from a Python type annotation
    """
    if isinstance(annot, type):
        if issubclass(annot, AbstractTool):
            name = annot.tool_name()
            description = annot.tool_description()
        else:
            name = tool_name_of_class_name(annot.__name__)
            # For a dataclass, if no docstring is provided,
            # `inspect.getdoc` shows its signature (name, attribute
            # names and types).
            description = inspect.getdoc(cast(Any, annot))
    elif isinstance(annot, typing.TypeAliasType):
        # TODO: we can do better here.
        name = str(annot)
        description = None
    else:
        # Any other type annotation, such as a union.
        name = str(annot)
        description = None
    adapter = pydantic.TypeAdapter(cast(Any, annot))
    return Schema(
        name=name,
        description=description,
        schema=adapter.json_schema(),
    )

LLMOutput dataclass

A single LLM chat completion.

Attributes:

Name Type Description
content str | Structured

The completion content, as a string or as a structured object (if structured output was requested).

tool_calls Sequence[ToolCall]

A sequence of tool calls made by the model, if any.

finish_reason FinishReason

The reason why the model stopped generating content.

logprobs Sequence[TokenInfo] | None

Optional sequence of token log probabilities, if requested.

reasoning_content str | None

Reasoning chain of thoughts, if provided (the DeepSeek API returns reasoning tokens, while the OpenAI API generally does not).

Source code in src/delphyne/stdlib/models.py
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
@dataclass
class LLMOutput:
    """
    A single LLM chat completion.

    Attributes:
        content: The completion content, as a string or as a structured
            object (if structured output was requested).
        tool_calls: A sequence of tool calls made by the model, if any.
        finish_reason: The reason why the model stopped generating
            content.
        logprobs: Optional sequence of token log probabilities, if
            requested.
        reasoning_content: Reasoning chain of thoughts, if provided (the
            DeepSeek API returns reasoning tokens, while the OpenAI API
            generally does not).
    """

    content: str | Structured
    tool_calls: Sequence[ToolCall]
    finish_reason: FinishReason
    logprobs: Sequence[TokenInfo] | None = None
    reasoning_content: str | None = None

FinishReason

FinishReason = Literal['stop', 'length', 'content_filter', 'tool_calls']

Reason why the LLM stopped generating content.

DummyModel dataclass

Bases: LLM

A model that always fails to generate completions.

Used by the answer_query command in particular.

Source code in src/delphyne/stdlib/models.py
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
@dataclass
class DummyModel(LLM):
    """
    A model that always fails to generate completions.

    Used by the `answer_query` command in particular.
    """

    @override
    def add_model_defaults(self, req: LLMRequest) -> LLMRequest:
        return req

    @override
    def _send_final_request(self, req: LLMRequest) -> LLMResponse:
        budget = Budget({NUM_REQUESTS: req.num_completions})
        return LLMResponse(
            outputs=[], budget=budget, log_items=[], model_name="<dummy>"
        )

WithRetry dataclass

Bases: LLM

Retrying with exponential backoff.

Source code in src/delphyne/stdlib/models.py
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
@dataclass
class WithRetry(LLM):
    """
    Retrying with exponential backoff.
    """

    model: LLM
    num_attempts: int = 5
    base_delay_seconds: float = 1.0
    exponential_factor: float = 2.0
    delay_noise: float | None = 0.1

    @override
    def add_model_defaults(self, req: LLMRequest) -> LLMRequest:
        return self.model.add_model_defaults(req)

    @override
    def estimate_budget(self, req: LLMRequest) -> Budget:
        return self.model.estimate_budget(req)

    def retry_delays(self) -> Iterable[float]:
        import random

        acc = self.base_delay_seconds
        for _ in range(self.num_attempts):
            delay = acc
            if self.delay_noise is not None:
                delay += random.uniform(0, self.delay_noise)
            yield delay
            acc *= self.exponential_factor

    @override
    def _send_final_request(self, req: LLMRequest) -> LLMResponse:
        for i, retry_delay in enumerate([*self.retry_delays(), None]):
            try:
                ret = self.model.send_request(req, None)
                if i > 0:
                    ret.log_items.append(
                        LLMResponseLogItem(
                            "info", "successful_retry", {"delay": retry_delay}
                        )
                    )
                return ret
            except LLMBusyException as e:
                if retry_delay is None:
                    raise e
                else:
                    time.sleep(retry_delay)
        assert False

CachedModel dataclass

Bases: LLM

Wrap a model to use a given cache.

Note

The LLM.send_request method has a cache argument that can be used as a replacement for the CachedModel wrapper. In addition, all standard prompting policies use a global request cache (see PolicyEnv) when available. Thus, external users should rarely need to manually wrap models with CachedModel.

Source code in src/delphyne/stdlib/models.py
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
@dataclass
class CachedModel(LLM):
    """
    Wrap a model to use a given cache.

    !!! note
        The `LLM.send_request` method has a `cache` argument that can be
        used as a replacement for the `CachedModel` wrapper. In
        addition, all standard prompting policies use a global request
        cache (see `PolicyEnv`) when available. Thus, external users
        should rarely need to manually wrap models with `CachedModel`.
    """

    model: LLM
    cache: LLMCache

    def __post_init__(self):
        @self.cache.cache
        def run_request(req: _CachedRequest) -> LLMResponse:
            base = req.request
            return self.model.send_request(base, None)

        self.run_request = run_request

    @override
    def _send_final_request(self, req: LLMRequest) -> LLMResponse:
        self.cache.num_seen[req] += 1
        num_seen = self.cache.num_seen[req]
        return self.run_request(_CachedRequest(req, num_seen))

    @override
    def estimate_budget(self, req: LLMRequest) -> Budget:
        return self.model.estimate_budget(req)

    @override
    def add_model_defaults(self, req: LLMRequest) -> LLMRequest:
        return self.model.add_model_defaults(req)

LLMCache dataclass

A cache for LLM requests.

More precisely, what are cached are (r, i) pairs where r is a request and i is the number of times the request has been answered since the model was instantiated. This way, caching works even when a policy samples multiple answers for the same request.

Multiple models can share the same cache.

LLMCache objects can be created using the load_request_cache context manager.

Source code in src/delphyne/stdlib/models.py
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
@dataclass
class LLMCache:
    """
    A cache for LLM requests.

    More precisely, what are cached are `(r, i)` pairs where `r` is a
    request and `i` is the number of times the request has been answered
    since the model was instantiated. This way, caching works even when
    a policy samples multiple answers for the same request.

    Multiple models can share the same cache.

    `LLMCache` objects can be created using the `load_request_cache`
    context manager.
    """

    cache: Cache[_CachedRequest, LLMResponse]
    num_seen: dict[LLMRequest, int]

    def __init__(self, cache: Cache[_CachedRequest, LLMResponse]):
        self.cache = cache
        self.num_seen: dict[LLMRequest, int] = defaultdict(lambda: 0)

load_request_cache

load_request_cache(file: Path, *, mode: CacheMode)

Context manager that loads an LLM request cache from a YAML file.

Source code in src/delphyne/stdlib/models.py
626
627
628
629
630
631
632
633
634
@contextmanager
def load_request_cache(file: Path, *, mode: CacheMode):
    """
    Context manager that loads an LLM request cache from a YAML file.
    """
    with load_cache(
        file, mode=mode, input_type=_CachedRequest, output_type=LLMResponse
    ) as cache:
        yield LLMCache(cache)

CacheMode

CacheMode = Literal['read_write', 'off', 'create', 'replay']

Caching mode:

  • off: the cache is disabled.
  • read_write: values can be read and written to the cache (no extra check is made).
  • create: the cache is used in write-only mode, and an exception is raided if a cached value already exists.
  • replay: all requests must hit the cache or an exception is raised.

Token dataclass

A token produced by an LLM.

Attributes:

Name Type Description
token str

String representation of the token.

bytes Sequence[int] | None

Optional sequence of integers representing the token's byte encoding.

Source code in src/delphyne/stdlib/models.py
239
240
241
242
243
244
245
246
247
248
249
250
251
@dataclass
class Token:
    """
    A token produced by an LLM.

    Attributes:
        token: String representation of the token.
        bytes: Optional sequence of integers representing the token's
            byte encoding.
    """

    token: str
    bytes: Sequence[int] | None

TokenInfo dataclass

Logprob information for a single token.

Source code in src/delphyne/stdlib/models.py
254
255
256
257
258
259
260
261
262
@dataclass
class TokenInfo:
    """
    Logprob information for a single token.
    """

    token: Token
    logprob: float
    top_logprobs: Sequence[tuple[Token, float]] | None

ModelPricing dataclass

Source code in src/delphyne/stdlib/models.py
330
331
332
333
334
@dataclass
class ModelPricing:
    dollars_per_input_token: float
    dollars_per_cached_input_token: float
    dollars_per_output_token: float

LLMResponseLogItem dataclass

Source code in src/delphyne/stdlib/models.py
369
370
371
372
373
@dataclass
class LLMResponseLogItem:
    level: LogLevel
    message: str
    metadata: Any = None

LLMBusyException dataclass

Bases: Exception

This exception should be raised when an LLM call failed due to a timeout or a rate limit error that warrants a retry. In particular, it should not be raised for ill-formed requests (those assumptions should not be caught) or when the LLM gave a bad answer (in which case budget was consumed and should be counted, while errors are added into LLMResponse).

See WithRetry for adding retrial logic to LLMs.

Source code in src/delphyne/stdlib/models.py
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
@dataclass
class LLMBusyException(Exception):
    """
    This exception should be raised when an LLM call failed due to a
    timeout or a rate limit error that warrants a retry. In particular,
    it should not be raised for ill-formed requests (those assumptions
    should not be caught) or when the LLM gave a bad answer (in which
    case budget was consumed and should be counted, while errors are
    added into `LLMResponse`).

    See `WithRetry` for adding retrial logic to LLMs.
    """

    exn: Exception

    def __str__(self) -> str:
        return str(self.exn)

BudgetCategory

BudgetCategory = Literal[
    "num_requests",
    "num_completions",
    "input_tokens",
    "cached_input_tokens",
    "output_tokens",
    "price",
]

Standard metrics to measure LLM inference usage.

budget_entry

budget_entry(category: BudgetCategory, model_class: str | None = None) -> str

Return a string that can be used as a key in a budget dictionary.

Source code in src/delphyne/stdlib/models.py
318
319
320
321
322
323
324
325
326
327
def budget_entry(
    category: BudgetCategory, model_class: str | None = None
) -> str:
    """
    Return a string that can be used as a key in a budget dictionary.
    """
    res = category
    if model_class is not None:
        res = f"{res}{BUDGET_ENTRY_SEPARATOR}{model_class}"
    return res

NUM_REQUESTS module-attribute

NUM_REQUESTS = 'num_requests'

NUM_COMPLETIONS module-attribute

NUM_COMPLETIONS = 'num_completions'

NUM_INPUT_TOKENS module-attribute

NUM_INPUT_TOKENS = 'input_tokens'

NUM_CACHED_INPUT_TOKENS module-attribute

NUM_CACHED_INPUT_TOKENS = 'cached_input_tokens'

NUM_OUTPUT_TOKENS module-attribute

NUM_OUTPUT_TOKENS = 'output_tokens'

DOLLAR_PRICE module-attribute

DOLLAR_PRICE = 'price'

Standard Models

standard_model

standard_model(
    model: StandardModelName | str,
    *,
    options: RequestOptions | None = None,
    pricing: ModelPricing | None | Literal["auto"] = "auto",
    model_class: str | None = None,
) -> OpenAICompatibleModel

Obtain a standard model from OpenAI, Mistral, DeepSeek or Gemini.

Make sure that the following environment variables are set:

  • OPENAI_API_KEY for OpenAI models
  • MISTRAL_API_KEY for Mistral models
  • DEEPSEEK_API_KEY for DeepSeek models
  • GEMINI_API_KEY for Gemini models

Parameters:

Name Type Description Default
model StandardModelName | str

The name of the model to use. The model provider is automatically inferred from this name.

required
options RequestOptions | None

Additional options for the model, such as reasoning effort or default temperature. The model option must not be overriden.

None
pricing ModelPricing | None | Literal['auto']

Pricing model to use. If "auto" is provided (default), it is inferred from the model's name (or ValueError is raised). If None is provided, no pricing information is used and so the associated budget metrics won't be computed.

'auto'
model_class str | None

An optional identifier for the model class (e.g., "reasoning_large"). When provided, class-specific budget metrics are reported, so that resource consumption can be tracked separately for different classes of models (e.g., tracking "num_requests__reasoning_large" separately from "num_requests__chat_small").

None

Raises:

Type Description
ValueError

The provider or pricing model could not be inferred.

Source code in src/delphyne/stdlib/standard_models.py
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
def standard_model(
    model: StandardModelName | str,
    *,
    options: md.RequestOptions | None = None,
    pricing: md.ModelPricing | None | Literal["auto"] = "auto",
    model_class: str | None = None,
) -> OpenAICompatibleModel:
    """
    Obtain a standard model from OpenAI, Mistral, DeepSeek or Gemini.

    Make sure that the following environment variables are set:

    - `OPENAI_API_KEY` for OpenAI models
    - `MISTRAL_API_KEY` for Mistral models
    - `DEEPSEEK_API_KEY` for DeepSeek models
    - `GEMINI_API_KEY` for Gemini models

    Parameters:
        model: The name of the model to use. The model provider is
            automatically inferred from this name.
        options: Additional options for the model, such as reasoning
            effort or default temperature. The `model` option must not
            be overriden.
        pricing: Pricing model to use. If `"auto"` is provided
            (default), it is inferred from the model's name (or
            `ValueError` is raised). If `None` is provided, no pricing
            information is used and so the associated budget metrics
            won't be computed.
        model_class: An optional identifier for the model class (e.g.,
            "reasoning_large"). When provided, class-specific budget
            metrics are reported, so that resource consumption can be
            tracked separately for different classes of models (e.g.,
            tracking "num_requests__reasoning_large" separately from
            "num_requests__chat_small").

    Raises:
        ValueError: The provider or pricing model could not be inferred.
    """

    openai_models = _values(OpenAIModelName)
    mistral_models = _values(MistralModelName)
    deepseek_models = _values(DeepSeekModelName)
    gemini_models = _values(GeminiModelName)

    prefix = _longest_standard_model_prefix_or_self(model)

    if prefix in openai_models:
        make_model = openai_model
    elif prefix in mistral_models:
        make_model = mistral_model
    elif prefix in deepseek_models:
        make_model = deepseek_model
    elif prefix in gemini_models:
        make_model = gemini_model
    else:
        raise ValueError(
            f"Failed to infer provider for model: {model}.\n"
            + "Use a more specific function such as `openai_model`."
        )
    return make_model(
        model, options=options, pricing=pricing, model_class=model_class
    )

openai_model

openai_model(
    model: OpenAIModelName | str,
    *,
    options: RequestOptions | None = None,
    pricing: ModelPricing | None | Literal["auto"] = "auto",
    model_class: str | None = None,
)

Obtain a standard model from OpenAI.

See standard_model for details.

Source code in src/delphyne/stdlib/standard_models.py
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
def openai_model(
    model: OpenAIModelName | str,
    *,
    options: md.RequestOptions | None = None,
    pricing: md.ModelPricing | None | Literal["auto"] = "auto",
    model_class: str | None = None,
):
    """
    Obtain a standard model from OpenAI.

    See `standard_model` for details.
    """
    return _openai_compatible_model(
        model,
        options=options,
        pricing=pricing,
        model_class=model_class,
        base_url="https://api.openai.com/v1",
        api_key_env_var="OPENAI_API_KEY",
    )

mistral_model

mistral_model(
    model: MistralModelName | str,
    *,
    options: RequestOptions | None = None,
    pricing: ModelPricing | None | Literal["auto"] = "auto",
    model_class: str | None = None,
)

Obtain a standard model from Mistral.

See standard_model for details.

Source code in src/delphyne/stdlib/standard_models.py
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
def mistral_model(
    model: MistralModelName | str,
    *,
    options: md.RequestOptions | None = None,
    pricing: md.ModelPricing | None | Literal["auto"] = "auto",
    model_class: str | None = None,
):
    """
    Obtain a standard model from Mistral.

    See `standard_model` for details.
    """
    return _openai_compatible_model(
        model,
        options=options,
        pricing=pricing,
        model_class=model_class,
        base_url="https://api.mistral.ai/v1",
        api_key_env_var="MISTRAL_API_KEY",
    )

deepseek_model

deepseek_model(
    model: DeepSeekModelName | str,
    *,
    options: RequestOptions | None = None,
    pricing: ModelPricing | None | Literal["auto"] = "auto",
    model_class: str | None = None,
)

Obtain a standard model from DeepSeek.

See standard_model for details.

Source code in src/delphyne/stdlib/standard_models.py
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
def deepseek_model(
    model: DeepSeekModelName | str,
    *,
    options: md.RequestOptions | None = None,
    pricing: md.ModelPricing | None | Literal["auto"] = "auto",
    model_class: str | None = None,
):
    """
    Obtain a standard model from DeepSeek.

    See `standard_model` for details.
    """
    return _openai_compatible_model(
        model,
        options=options,
        pricing=pricing,
        model_class=model_class,
        base_url="https://api.deepseek.com",
        api_key_env_var="DEEPSEEK_API_KEY",
    )

gemini_model

gemini_model(
    model: GeminiModelName | str,
    *,
    options: RequestOptions | None = None,
    pricing: ModelPricing | None | Literal["auto"] = "auto",
    model_class: str | None = None,
)

Obtain a standard model from Gemini.

See standard_model for details.

Source code in src/delphyne/stdlib/standard_models.py
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
def gemini_model(
    model: GeminiModelName | str,
    *,
    options: md.RequestOptions | None = None,
    pricing: md.ModelPricing | None | Literal["auto"] = "auto",
    model_class: str | None = None,
):
    """
    Obtain a standard model from Gemini.

    See `standard_model` for details.
    """
    return _openai_compatible_model(
        model,
        options=options,
        pricing=pricing,
        model_class=model_class,
        base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
        api_key_env_var="GEMINI_API_KEY",
    )